Object Classification in Images of Neoclassical Furniture Using Deep Learning
نویسندگان
چکیده
This short paper outlines research results on object classification in images of Neoclassical furniture. The motivation was to provide an object recognition framework which is able to support the alignment of furniture images with a symbolic level model. A data-driven bottom-up research routine in the Neoclassica research framework is the main use-case. It strives to deliver tools for analyzing the spread of aesthetic forms which are considered as a cultural transfer process.
منابع مشابه
Classification of Chest Radiology Images in Order to Identify Patients with COVID-19 Using Deep Learning Techniques
Background and Aim: Due to the important role of radiological images for identifying patients with COVID-19, creating a model based on deep learning methods was the main objective of this study. Materials and Methods: 15,153 available chest images of normal, COVID-19, and pneumonia individuals which were in the Kaggle data repository was used as dataset of this research. Data preprocessing inc...
متن کاملObject Classification in Images of Neoclassical Artifacts Using Deep Learning
The transformation of aesthetic styles has been at the heart of art history since its inception as a scholarly discipline in the late eighteenth century. Analyzing the single artifact and the carefully curated corpus have been the techniques for crafting hermeneutic understanding for such processes of change. Recently new instruments based on statistical techniques empower us for a fresh take o...
متن کاملVisual artefacts through the Black Box: Analysing Deep Learning classifcation of Neoclassical furniture images
Te recent trend towards introducing digital instruments in the history of art is glaring at best. Like so many disruptive technologies new techniques in computer vision and natural language processing are about to fundamentally change the way we conduct and even envision our very disciplines. Image classifcation experiments for instance have become a trending topic in visual culture research an...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملNon-melanoma skin cancer diagnosis with a convolutional neural network
Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...
متن کامل